Critical Temperatures of Oil and Fat Chemicals

Sir:

Critical temperatures (above which gases cannot be liquefied) are relatively scarce, particularly for high-boiling compounds, and are sometimes inaccurate. Because of the importance of critical temperatures (1-3), methods based on group contributions or comparison with other properties have been proposed for estimating them (1-4).

In this investigation, simple equations correlating critical temperatures, T_c , K, with homolog chain length (measured by number of carbons, C) were developed because such equations can be used to estimate T_c for many additional homologs (by interpolation or prudent extrapolation) and to identify significantly incorrect T_c , K values. Molar critical temperatures $(M/T_c$, K, where M is molecular weight) were studied because molar properties (M/P, where P is property) are usually linear with homolog chain length (except for some lower homologs).

The investigation demonstrated (i) critical temperatures can be related (by Eqs. 1 and 2) to the limiting critical temperature ($T_{c\infty}$, K for M_{∞} and C_{∞}); (ii) 1072 K is suitable as $T_{c\infty}$ in Equations 1 and 2; (iii) molar critical temperatures (M/T_c , K) are approximately linear with homolog chain length (Eq. 3); and (iv) a simple equation (Eq. 4) is useful for estimating homolog critical temperatures.

$$T_c, \mathbf{K} = T_{c\infty} + m/(C+k)$$
[1]

where $T_{c\infty}$ is the intercept, *m* is slope, and *k* is an adjustable parameter.

$$(C+a) / T_{c}, K = b + C/T_{c\infty}$$
 [2]

where *a* is an adjustable parameter, *b* is intercept, and the slope is $1/T_{c\infty}$.

$$M/T_c, \mathbf{K} = b + mC$$
^[3]

where *b* and *m* are intercept and slope.

$$T_c, \mathbf{K} = b + mC^{1/2}$$
 [4]

The adjustable parameter *a* calculated from Equation 1 ($a = m/T_{c\infty} + k$), can be used to develop Equation 2. Equations 1–4, like other homolog equations, have limited usefulness for estimating properties of some lower homologs.

TABLE 1	
Equations $[T_{c'} K = 1072 + m/(C + k)]$ Correlating Critical Temperatures $(T_{c'} K)$ with Numbe	r of Homolog
Carbons (C) ^{<i>a</i>-d}	

		Carbons ^e	k	Slope, m	Corr. coeff., r	Ref.
Ethers	ROMe	4-6	10.90	-8,885	- <u>4</u> , 71	6
	ROEt	4-12	13.52	-10,588	- <u>4</u> , 61	5,6
	ROR	4-12	13.51	-10,584	<u>-4</u> , 69	5,6
Esters	RCOOMe	3-13	14.31	-9,846	– <u>3</u> , 54	7
	RCOOEt	4-11	15.7	-10,855	- <u>3</u> , 43	7
	RCOOisoBu	6-8	18.00	-12,201	- <u>3</u> , 29	5
	MeCOOR	4-8	14.89	-10,372	- <u>3</u> , 84	7
Aldehydes	RCHO	2-9	13.04	-9,113	- <u>4</u> , 42	7
Ketones	RCOMe	5-14	13.37	-9,384	– <u>3</u> , 83	9
	RCOR	7-13	13.36	-9,594	– <u>3</u> , 61	9
Alcohols	ROH	5-12	13.79	-9,129	– <u>3</u> , 79	10
	2-ROH	5-10	13.51	-9,495	– <u>3</u> , 79	10
Acids	RCOOH	5-10	15.88	-8,975	– <u>3</u> , 63	6,8
Amines	RNH_2	2-6	12.13	-8,705	<u>-4</u> , 85	6
	$R_2 NH$	4-8	13.11	-9,815	- <u>3</u> , 24	6
	$R_{3}N$	6-12	17.83	-12,799	1.00	6
Nitriles	RČN	4-8	13.82	-8,686	– <u>4</u> , 54	6
Chlorides	RCI	2-4	10.94	-7,921	– <u>3</u> , 89	4

^aR is *n*-alkyl having one or more carbons.

^bA few clearly inaccurate data were omitted in forming the equations.

^{*c*}*k* is adjustable parameter.

^dCorrelation coefficient, r, of -0.999971 given as $-\underline{4}$, 71.

^eIn addition to the limiting critical temperature, 1072 K.

Paper no. J10024 in JAOCS 79, 203-204 (February 2002)

TABLE 2Equations (T_c , K = $b + m C^{1/2}$) Correlating Critical Temperatures (T_c ,K) with $C^{1/2}$ (C is homolog Carbon)^{a-c}

	Carbons	Intercept, b	Slope, m	Corr. coeff., r
ROMe	3–6	174.2	151.6	<u>3</u> , 75
ROR	6-12	227.2	124.2	<u>3</u> , 81
RCOOMe	6-13	329.7	105.9	<u>3</u> , 84
RCOOEt	4-11	303.5	109.4	<u>3</u> , 25
MeCOOR	4-8	291.3	115.9	<u>3</u> , 79
RCHO	2-9	29	12	<u>4</u> , 72
RCOMe	4-11	302.0	116.7	<u>3</u> , 75
RCOR	3-13	320.9	107.3	<u>3</u> , 69
ROH	3-12	351.4	106.2	<u>3</u> , 86
2-ROH	4-10	303.5	115.4	<u>3</u> , 77
RCOOH	4-10	446.9	87.95	<u>3</u> , 77
RNH ₂	2-6	269.7	131.4	<u>4</u> , 57
$R_2 NH$	4-8	238.8	130.2	<u>3</u> , 62
rīn	4-8	369.6	107.7	<u>3</u> , 72

^aData from references in Table 1.

^bR is *n*-alkyl having one or more carbons.

^cCorrelation coefficient, r, of 0.99975 given as <u>3</u>, 75.

The use of Equation 1 with T_c , K data of many homologous series indicated $T_{c\infty}$ is about 1072 K. Homolog carbons, C, were plotted against $1/(T_c - 1072)$ to get Equation 5, which was rearranged to Equation 1 for 18 homologous series (Table 1).

$$C = b + m/(T_c - 1072)$$
[5]

The correlation coefficients, r, obtained with Equations 1–4 indicated good agreement between calculated and literature values. The expressions $(C + a)/T_c$, K (Eq. 2) and M/T_c , K (Equation 3), which are linear with homolog chain length, should also be linear with property functions (e.g., molar volumes) that are chain-length linear.

The equations in Table 1 are presumably more suitable for upward extrapolations than those in Table 2. The Table 2 equations are simple and particularly useful with intermediate and some lower homologs. The M/T_c correlations (Eq. 3) lack special advantages and are not reported.

REFERENCES

- Marschner, R.F., and J.B. Beverly, The Simple Relation Between Critical Temperature and Boiling Point, *J. Chem. Educ.* 33:604–607 (1956).
- Yaws, C.L., *Thermodynamic and Physical Property Data*, Gulf Publishing Co., Houston, 1992, pp. 62–71.
- Somayajulu, G.R., Estimation Procedures for Critical Constants, J. Chem. Eng. Data 34:106–120 (1989).
- Riddick, J.A., W.B. Bunger, and T.K. Sakano, Organic Solvents, John Wiley & Sons, New York, 1986, pp. 192–239, 281–417.
- Reid, R.C., J.M. Prausnitz, and B.E. Poling, *Properties of Gases and Liquids*, 4th edn., McGraw-Hill Book Co., New York, 1987, pp. 692–723.
- Stephenson, R.M., and S. Malanowski, *Handbook of Thermody*namics of Organic Compounds, Elsevier, New York, 1987, pp. 545–548.
- Kudchadker, A.R., D. Ambrose, and C. Tsonopoulos, Oxygen Compounds Other Than Alkanols and Cycloalkanols, *J. Chem. Eng. Data*, 46:457–461 (2001).
- Lide, D.R. (ed.), Handbook of Chemistry and Physics, 78th edn., CRC Press, Boca Raton, FL, 1997–1998,6-57–6-61.
- Pulliam, M.K., M.T. Gude, and A.S. Teja, Critical Temperatures and Densities of *n*-Alkanones, *J. Chem. Eng. Data* 40:455–458 (1995).
- Gude, M., and A.S. Teja, Vapor–Liquid Critical Properties of Elements and Compounds. 4, Aliphatic Alkanols, *Ibid.* 40:1025–1036 (1995).

Charles H. Fisher* Chemistry Department Roanoke College Salem, VA 24153

[Received July 6, 2001; accepted November 20, 2001]

*E-mail: fisher@roanoke.edu